HW03 - Chemical Equilibria 1

	3 pts
When the chemical reaction	
$A + B \rightleftharpoons C + D$ is at equilibrium, which of the following is true?	
 both the forward and reverse reactions have stopped neither the forward nor the reverse reactions have stopped 	
all four concentrations are equal	
the sum of the concentrations of A and B equals the sum of the concentrations of C	C and D
Question 2	3 pts
Explain why equilibrium constants are dimensionless.	
They are dimensionless because the pressures or concentrations we put in are all substances in their standard states.	for the
O They are not really dimensionless, but we must treat them as such in order to be a $\ln(K)$ in the expression: $\Delta G^\circ \ = \ -RT \ln K$	ble to take
Activities (which are dimensionless) are actually what should be used in the mass expression and therefore equilibrium constants. Concentration and pressure value.	
place of activities of species. Therefore true equilibrium constants have no units. This is a trick question. Equilibrium constants have units that involve some multiple atmospheres or males per liter.	e of
atmospheres or moles per liter.	
Question 3	3 pts
The expression for K_c for the reaction	
$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ at equilibrium is:	
$[NH_3]^4[O_2]^5$	
$\frac{[NH_3][O_2]}{[NH_3]^4[O_2]^5}$	
$[NO]^4[H_2O]^6 \ [NH_3]^4[O_2]^5$	
Question 4	3 pts
Consider the following reactions at 25°C:	
$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ $K_c = 1x10^{30}$ $2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g)$ $K_c = 5x10^{-82}$	
$2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$ $K_c = 3x10^{91}$ Which compound is most likely to dissociate and give $O_2(g)$ at 25°C?	
O CO	
○ NO	
○ H₂O○ CO₂	
Question 5	3 pts
At 600°C, the equilibrium constant for the reaction	
$2HgO(s) \longrightarrow 2Hg(I) + O_2(g)$ is 2.8. Calculate the equilibrium constant for the reaction	
$0.5O_2(g) + Hg(I) \longrightarrow HgO(s)$	
○ 1.7○ 0.60	
O 1.1	
O.36	
Question 6	3 pts
Consider the reaction	· ·
$2HaO(s) \rightleftharpoons 2Ha(l) + O_s(a)$	
$2HgO(s) \rightleftharpoons 2Hg(I) + O_2(g)$ What is the form of the equilibrium constant K, for this reaction?	
What is the form of the equilibrium constant K _c for this reaction?	
What is the form of the equilibrium constant K_c for this reaction? $ \boxed{ [Hg]^2 [O_2] } $ $ \boxed{ O_2] } $	
What is the form of the equilibrium constant K_c for this reaction?	
What is the form of the equilibrium constant K_c for this reaction? $ \bigcirc [Hg]^2 [O_2] $ $ \bigcirc \frac{[O_2]}{[HgO]^2} $	
What is the form of the equilibrium constant K_c for this reaction? $ [Hg]^2 [O_2] $ $ \frac{[O_2]}{[HgO]^2} $ $ \frac{[Hg]^2 [O_2]}{[HgO]^2} $	
What is the form of the equilibrium constant K_c for this reaction? $ [Hg]^2 [O_2] $ $ \frac{[O_2]}{[HgO]^2} $ $ \frac{[Hg]^2 [O_2]}{[HgO]^2} $	4 pts
What is the form of the equilibrium constant K_c for this reaction? $ [Hg]^2 [O_2] $ $ [O_2] $ $ [Hg]^2 [O_2] $ $ [HgO]^2 $ $ [O_2] $ $ [O_2] $ $ Question 7$ $ K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction} $	4 pts
What is the form of the equilibrium constant K_c for this reaction? $ [Hg]^2 [O_2] $ $ \frac{[O_2]}{[HgO]^2} $ $ \frac{[Hg]^2 [O_2]}{[HgO]^2} $ $ [O_2] $ Question 7 $ K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction} $ $ 2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g) $ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is	
What is the form of the equilibrium constant K_c for this reaction?	
What is the form of the equilibrium constant K_c for this reaction? $ [Hg]^2 [O_2] $ $ [O_2] $ $ [HgO]^2 $ $ [HgO]^2 $ $ [HgO]^2 $ $ [O_2] $ $ [O_3] $ $ [O_3] $ $ [O_3] $ $ [O_4] $ $ [O_4] $ $ [O_5] $ $ [O_6] $ $ [O_7] $ $ [O_8] $	
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2 [O_2]$ $\frac{[O_2]}{[HgO]^2}$ $\frac{[Hg]^2 [O_2]}{[HgO]^2}$ $O[O_2]$ Question 7 $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ?	
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2[O_2]$ $[HgO]^2$ $[HgO]^2$ $[O_2]$ $[HgO]^2$ $[O_2]$ $[O_2]$ Question 7 $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? 10 M 0.10 M	
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2[O_2]$ $[HgO]^2$ $[HgO]^2$ $[O_2]$ $[HgO]^2$ $[O_2]$ $[O_2]$ Question 7 $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? 10 M 0.10 M	
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2[O_2]$ $[HgO]^2$ $[HgO]^2$ $[O_2]$ $[HgO]^2$ $[O_2]$ Question 7 $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) = 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? 10 M 1.0 M 0.10 M 0.0010 M	s the
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2[O_2]$ $[O_2]$ $[HgO]^2$ $[HgO]^2$ $[O_2]$ $[O_2]$ Question 7 $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? 10 M 0.10 M 0.010 M 0.0010 M Question 8 Consider the reaction below $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	4 pts
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2 [O_2]$ $[HgO]^2$ $[Hg]^2 [O_2]$ $[HgO]^2$ $[O_2]$ $[O_2]$ Question 7 $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? 10 M 0.10 M 0.10 M 0.0010 M Question 8 Consider the reaction below	the 4 pts
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2[O_2]$ $\frac{[O_2]}{[HgO]^2}$ $\frac{[Bg]^2[O_2]}{[HgO]^3}$ $[O_2]$ $Question 7$ $K_c = 2.6 \times 10^8 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? 0.10 M 0.10 M 0.0010 M 0.0010 M $0.0010 K the equilibrium pressures of the three gases in one mixture were 0.562 atm SO_2, 0.101 atm O_2, and 0.332 atm SO_3. Calculate the value of K_1$	the 4 pts
What is the form of the equilibrium constant K_c for this reaction? $[Hg]^2 [O_2]$ $\frac{[O_2]}{[HgO]^2}$ $[Hg]^2 [O_2]$ $\frac{[Hg]^2 [O_2]}{[HgO]^2}$ $[O_2]$ $Question 7$ $K_c = 2.6 \times 10^3 \text{ at } 825 \text{ K for the reaction}$ $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$ The equilibrium concentration of H_2 is 0.0020 M and S_2 is 0.0010 M. What is equilibrium concentration of H_2S ? $\begin{array}{c} 10 \text{ M} \\ \hline \hline 0.10 \text{ M} \\ \hline \hline 0.0010 \text{ M} \\ \hline \end{array}$ $\begin{array}{c} 0.0010 \text{ M} \\ \hline \end{array}$	the 4 pts

Question 9

73.5

7440

0.0784

0 19.7

Consider the following reaction:

 $2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$

Calculate K_c for this reaction at 100°C.

 $K_p = 2.40 @ 373 K$

4 pts